packages = ['numpy']

Exercise 4.b
Inverse kinematics and nullspace control

Inverse kinematics consists of finding a configuration (joint angles) that reaches a target pose (position and/or orientation) with the end-effector of the robot. You can read more about inverse kinematics in Section 5 of the RCFS documentation.

The goal of this exercise is to implement an inverse kinematics function for the 3 degree-of-freedom manipulator shown on the right. We would like that this robot reaches the pink object continuously even if we move it, which can be done by clicking and dragging the object.

The function controlCommand continuously sends joint velocity commands to the robot. Currently, the robot is still because u=np.zeros(param.nbVarX) sends zero commands to the robot.

  • Change this function to send velocity commands u to reach the target position target_position using current_ee_position, jacobian and target_position.
  • Change this function to send velocity commands u to reach the target position target_position as a primary task, by keeping the joint configuration the same as the initial one as a secondary task. You can do this by using nullspace control as presented in Section 5.2 of the RCFS documentation.

x = np.array([-np.pi/4, np.pi/2, np.pi/4]) # Initial robot state def controlCommand(x, param): target_position = param.Mu[:2] current_ee_position = fkin(x, param)[:2] jacobian = Jkin(x, param)[:2] u = np.zeros(param.nbVarX) # Implement here return u
x = np.array([-np.pi/4, np.pi/2, np.pi/4]) # Initial robot state def controlCommand(x, param): # Answer 1: alpha = 10. # See how alpha changes the reaction of the robot. What is a good way to automatically adjust it? target_position = param.Mu[:2] current_ee_position = fkin(x, param)[:2] jacobian = Jkin(x, param)[:2] u = alpha * np.linalg.pinv(jacobian) @ (target_position - current_ee_position) # Position tracking return u
x = np.array([-np.pi/4, np.pi/2, np.pi/4]) # Initial robot state x_hat = np.array([-np.pi/4, np.pi/2, np.pi/4]) # Desired robot state def controlCommand(x, param): target_position = param.Mu[:2] current_ee_position = fkin(x, param)[:2] jacobian = Jkin(x, param)[:2] # Answer 2: jacobian_pinv = np.linalg.pinv(jacobian) nullspace_matrix = np.eye(param.nbVarX) - jacobian_pinv @ jacobian # Nullspace projection operator u = jacobian_pinv @ (target_position - current_ee_position) + nullspace_matrix @ (x_hat - x) return u





from pyodide.ffi import create_proxy from js import Path2D import numpy as np object_angle = document.getElementById('object_angle') # Objects angle object_angle = lambda: None object_angle.value = 0 ######################################################################################### base1_svg = Path2D.new('m -40.741975,77.319831 c -0.47247,-4.03869 7.32825,-20.1653 10.1171,-22.57617 4.71807,-4.07862 14.00201,-4.3722 15.87822,-6.89366 1.16821,-1.06725 1.19306,-2.45846 1.19136,-4.984461 -0.005,-6.836939 0.0375,-38.9164375 -0.0588,-42.62054746 C -13.757555,-5.2728275 -9.8130348,-13.34661 -0.02248483,-13.67734 7.5903552,-13.93451 13.741895,-7.1292375 13.608255,-0.84839739 13.474625,5.4324325 13.073715,50.200081 13.741895,54.075491 c 0.66817,3.8754 3.0736,26.72695 3.0736,26.72695 l -53.47684,-0.23624 c -3.68777,-0.0163 -4.0806,-3.24637 -4.0806,-3.24637 z') base2_svg = Path2D.new('m -13.653647,45.770986 27.119789,-0.07088') seg11_svg = Path2D.new('M 1.1085815,-48.64595 C 2.8616565,-42.037584 12.141047,-7.3721658 13.181308,-3.8158258 14.730923,1.4818692 12.982058,10.29588 3.6015646,13.1191 -3.6924249,15.31437 -11.379603,10.30832 -12.856452,4.2020952 c -1.476846,-6.106188 -11.012844,-42.5297362 -12.082149,-45.6580692 -1.43181,-5.329295 -2.652606,-11.707828 -2.961653,-18.313541 -0.264086,-5.644652 2.111069,-7.347919 2.111069,-7.347919 2.624567,-3.183184 8.150604,-3.203987 10.333578,-6.275591 1.769697,-2.490098 1.823736,-5.627976 1.959877,-8.208118 0.347278,-6.581603 7.8818877,-11.888333 13.83865325,-11.31331 11.26196775,1.087146 13.17554475,9.678077 12.89920975,14.363762 -0.465778,7.897881 -5.8447437,11.223081 -10.8257944,12.5317 -4.0229212,1.0569 -4.0522977,5.558527 -3.6062254,8.077811 0.53206435,3.004955 1.69902315,6.035714 2.2984683,9.29523 z') seg12_svg = Path2D.new('m 0.05406256,-11.597507 c -6.39589386,0 -11.58398456,5.1988245 -11.58398456,11.60742169 0,6.40859681 5.1880907,11.60742231 11.58398456,11.60742231 6.39589414,0 11.58398444,-5.1988255 11.58398444,-11.60742231 0,-6.40859719 -5.1880903,-11.60742169 -11.58398444,-11.60742169 z') seg13_svg = Path2D.new('m 0.89874154,-90.983149 c -6.37570324,-0.50777 -11.96015354,4.262759 -12.46893054,10.651135 -0.508778,6.388373 4.2502031,11.982666 10.62590635,12.490434 6.37571205,0.507768 11.96015765,-4.262758 12.46893565,-10.65113 0.50878,-6.388376 -4.2501988,-11.982669 -10.62591146,-12.490439 z') seg14_svg = Path2D.new('M -24.784795,-41.659214 1.1085815,-48.64595') seg15_svg = Path2D.new('m -20.037453,-23.361462 c 0,0 0.150891,-2.736177 2.859936,-3.928038 2.698441,-1.058633 15.064238,-4.832856 18.5649072,-5.023273 3.4151981,-0.800461 4.5404475,1.903276 4.5404475,1.903276') seg21_svg = Path2D.new('m 1.0846146,-63.378335 c 0.2455591,-2.834423 3.4523451,-16.559449 4.0431711,-18.415736 1.4726648,-4.271726 5.7043363,-7.554682 6.9088533,-12.676592 0.896166,-8.180737 -5.5218419,-14.075707 -11.67006058,-13.690757 -5.14680322,0.32229 -11.25729142,3.07163 -11.71005642,12.988353 -0.245696,5.381384 2.1556935,6.934579 1.261502,10.892576 -1.067995,4.72731 -3.306673,16.43352 -4.123841,19.092346 -1.013352,3.297141 -2.321128,5.411066 -6.454795,11.635385 -4.133667,6.224321 -5.394419,14.031661 -6.200979,18.250843 -0.80656,4.219183 -2.639059,14.959257 -1.769749,20.046047 0.662189,3.874813 5.317911,7.0872532 8.194376,7.8656925 2.799342,0.6504765 3.517742,0.6405013 5.007603,2.5337107 1.489861,1.8932084 1.467073,4.13299795 2.141633,7.605938 0.4829,3.1674976 4.2207359,9.9421608 11.3304401,10.8558018 C 5.1524174,14.518915 14.875984,8.7881742 13.263942,-1.6038057 11.604726,-12.299883 3.6744317,-12.710682 0.92067775,-13.632854 -1.5420631,-15.114186 -2.6268693,-19.519275 -1.8747035,-22.72879 -1.1225409,-25.938308 1.196278,-37.889572 1.3340625,-40.676542 1.8762966,-51.644393 -0.30239687,-54.622686 1.0846146,-63.378335 Z') seg22_svg = Path2D.new('M -11.586565,0.93074939 C -11.083534,7.3068272 -5.4927791,12.069965 0.89597241,11.565935 7.284721,11.061904 12.059397,5.4810033 11.556367,-0.89507457 11.053335,-7.2711624 5.4625836,-12.034299 -0.92616504,-11.530269 -7.3149165,-11.02624 -12.089595,-5.4453385 -11.586565,0.93074939 Z') seg23_svg = Path2D.new('m -26.640574,-36.592971 c 5.304398,1.031726 26.42204728,5.61535 26.42204728,5.61535') seg24_svg = Path2D.new('m -18.97242,-7.0296766 c 0,0 5.357638,0.9161489 6.790283,-0.3224518 0,0 1.645529,-2.0773004 2.9224726,-3.1740806 1.2245317,-1.051764 3.0335173,-2.07985 3.0335173,-2.07985 1.9028326,-1.212528 2.2666634,-4.627153 3.1812597,-7.476594 1.7216337,-5.363774 1.9197573,-6.250728 1.9197573,-6.250728') seg31_svg = Path2D.new('m -28.6797,-26.841855 c -1.2675,3.57197 -1.218858,4.557009 -1.595581,8.234518 -0.376722,3.677509 -0.09415,6.442577 -0.0095,8.568278 -0.253944,2.7250156 1.116106,5.225167 1.12849,7.9985227 -0.113818,2.61245518 -0.732443,4.5287742 -1.461378,6.6813667 -0.049,4.0362406 -0.269163,8.1196006 0.283769,12.1263916 0.524743,2.889586 3.777418,3.398207 6.006756,4.487809 3.000431,1.151299 5.962802,2.459036 9.011639,3.446545 2.908512,0.626882 4.197412,-2.375507 4.231736,-4.87884 0.0854,-2.479073 0.335025,-4.760767 2.8765686,-5.44487 3.9560009,-1.216619 8.05245912,-1.946456 12.0010307,-2.99019 5.703849,-2.0129894 9.4239807,-8.5502843 7.7887937,-14.4529723 -1.270267,-5.5243102 -6.867591,-9.6714567 -12.54557065,-9.0219797 -3.01008665,0.221201 -5.63894195,1.895241 -8.24502045,3.5658663 -2.0818469,1.3351245 -1.6868669,-3.2534803 -1.7460679,-4.8326393 -0.0013,-3.276304 0.21006,-3.084655 0.0062,-4.979716 -0.203891,-1.895062 -0.264478,-4.611901 -1.494343,-8.479035 -5.412496,-0.0097 -15.221678,-0.05267 -15.221678,-0.05267 z') seg32_svg = Path2D.new('m -14.015345,-33.566241 c -1.232867,-1.390966 -2.465733,-2.781932 -3.698599,-4.172898 0.0038,-3.646334 0.02928,-7.293353 0.01923,-10.939249 -0.02501,-0.949144 -0.522837,-2.078703 -1.513796,-2.119205 -0.942425,0.01577 -1.897362,-0.08159 -2.832194,0.04493 -0.950302,0.333999 -1.133628,1.580185 -1.115778,2.522511 -0.04848,3.474219 -0.09695,6.948437 -0.145432,10.422655 -1.213181,1.407781 -2.426362,2.815561 -3.639543,4.223342 4.308705,0.006 8.617409,0.01194 12.926114,0.01791 z') seg33_svg = Path2D.new('m -12.412129,-26.867866 v -4.799995 c 0,-1.919999 -0.435344,-1.878396 -0.888867,-1.876655 -3.030562,0.01164 -14.262729,-0.07064 -14.523962,-0.04334 -0.467055,0 -0.934111,0 -0.883228,1.904343 0.01098,0.410814 0.0013,4.808677 0.0013,4.808677') seg34_svg = Path2D.new('M -10.345869,0.79321884 C -9.8879044,6.4881727 -4.8873495,10.735439 0.81892316,10.276563 6.5251942,9.8176865 10.782785,4.8259161 10.324819,-0.86903645 9.8668498,-6.5639995 4.8662942,-10.811265 -0.8399769,-10.35239 -6.5462504,-9.8935134 -10.803835,-4.901743 -10.345869,0.79321884 Z') seg35_svg = Path2D.new('m -10.926083,-10.640947 c -12.932836,-0.04585 -19.378158,-0.0931 -19.378158,-0.0931') seg36_svg = Path2D.new('M -9.9187154,15.300602 C -29.124234,15.272545 -30.475824,15.251842 -30.475824,15.251842') seg37_svg = Path2D.new('m -23.186087,-46.845579 h 5.542233 v 0') # Logarithmic map for R^2 x S^1 manifold def logmap(f, f0): diff = np.zeros(3) diff[:2] = f[:2] - f0[:2] diff[2] = np.imag(np.log(np.exp(f0[-1]*1j).conj().T * np.exp(f[-1]*1j).T)).conj() return diff # Apply angle offsets to match robot kinematic chain def emulate_DH_params(x): xt = np.copy(x) xt[0] = xt[0] - np.pi/2 orient = np.mod(np.sum(xt,0)+np.pi, 2*np.pi) - np.pi xt[2] = xt[2] - np.arctan(20.5/51) return xt, orient # Forward kinematics for end-effector (in robot coordinate system) def fkin(x, param): xt, orient = emulate_DH_params(x) L = np.tril(np.ones([param.nbVarX, param.nbVarX])) f = np.vstack([ param.l @ np.cos(L @ xt), param.l @ np.sin(L @ xt), orient ]) # f1,f2,f3, where f3 is the orientation (single Euler angle for planar robot) f[1] += 81 return f.flatten() # Forward kinematics for all joints (in robot coordinate system) def fkin0(x, param): xt, _ = emulate_DH_params(x) L = np.tril(np.ones([param.nbVarX, param.nbVarX])) f = np.vstack([ L @ np.diag(param.l) @ np.cos(L @ xt), L @ np.diag(param.l) @ np.sin(L @ xt) ]) f = np.hstack([np.zeros([2,1]), f]) f[1] += 81 return f # Jacobian with analytical computation (for single time step) def Jkin(xt, param): xt, _ = emulate_DH_params(xt) L = np.tril(np.ones([param.nbVarX, param.nbVarX])) J = np.vstack([ -np.sin(L @ xt).T @ np.diag(param.l) @ L, np.cos(L @ xt).T @ np.diag(param.l) @ L, np.ones([1,param.nbVarX]) ]) return J ## Parameters # =============================== param = lambda: None # Lazy way to define an empty class in python param.dt = 1e-1 # Time step length param.nbVarX = 3 # State space dimension (x1,x2,x3) param.l = [79, 96, 55] # Robot links lengths param.sz = [50, 30] # Size of objects param.Mu = [100, 0, 0] # Object position and orientation ######################################################################################### # GUI scaling_factor = 2 # General scaling factor for rendering # Mouse events mouse0 = np.zeros(2) mouse = np.zeros(2) mousedown = 0 selected_obj = -1 hover_obj = -1 hover_joint = -1 def onMouseMove(event): global mouse, mouse0 offset = canvas.getBoundingClientRect() mouse0[0] = (event.clientX - offset.x) * canvas.width / canvas.clientWidth mouse0[1] = (event.clientY - offset.y) * canvas.height / canvas.clientHeight mouse[0] = (mouse0[0] - canvas.width * 0.5) / scaling_factor mouse[1] = (mouse0[1] - canvas.height * 0.5) / scaling_factor def onTouchMove(event): global mouse, mouse0 offset = event.target.getBoundingClientRect() mouse0[0] = (event.touches.item(0).clientX - offset.x) * canvas.width / canvas.clientWidth mouse0[1] = (event.touches.item(0).clientY - offset.y) * canvas.height / canvas.clientHeight mouse[0] = (mouse0[0] - canvas.width * 0.5) / scaling_factor mouse[1] = (mouse0[1] - canvas.height * 0.5) / scaling_factor def onMouseDown(event): global mousedown mousedown = 1 # console.log('Mouse down') def onMouseUp(event): global mousedown, selected_obj mousedown = 0 selected_obj = -1 # console.log('Mouse up') def onWheel(event): global hover_joint, hover_obj, x, object_angle #if hover_obj == 0: #param.Mu[2] += 0.2 * (event.deltaY/106) # object_angle.value = (float)(object_angle.value) + 0.2 * (event.deltaY/106) if hover_joint >= 0: x[hover_joint] += 0.2 * (event.deltaY/106) document.addEventListener('mousemove', create_proxy(onMouseMove)) #for standard mouse document.addEventListener('touchmove', create_proxy(onTouchMove)) #for mobile interfaces document.addEventListener('mousedown', create_proxy(onMouseDown)) #for standard mouse #document.addEventListener('pointerdown', create_proxy(onMouseDown)) #for mobile interfaces document.addEventListener('touchstart', create_proxy(onMouseDown)) #for mobile interfaces document.addEventListener('mouseup', create_proxy(onMouseUp)) #for standard mouse #document.addEventListener('pointerup', create_proxy(onMouseUp)) #for mobile interfaces document.addEventListener('touchend', create_proxy(onMouseUp)) #for mobile interfaces document.addEventListener('wheel', create_proxy(onWheel)) #for standard mouse ######################################################################################### canvas = document.getElementById('canvas') ctx = canvas.getContext('2d') def clear_screen(): ctx.setTransform(1, 0, 0, 1, 0, 0) # Reset transformation to identity ctx.fillStyle = 'white' ctx.fillRect(0, 0, canvas.width, canvas.height) def draw_ground(): ctx.setTransform(scaling_factor, 0, 0, scaling_factor, canvas.width*0.5, canvas.height*0.5) # Reset transformation ctx.beginPath() ctx.lineCap = 'round' ctx.lineJoin = 'round' ctx.lineWidth = '5' ctx.strokeStyle = '#CCCCCC' ctx.moveTo(-200, 164) ctx.lineTo(200, 164) ctx.stroke() def draw_robot(xt, color1, color2, color3, color4, selectable): global hover_joint ctx.setTransform(scaling_factor, 0, 0, scaling_factor, canvas.width*0.5, canvas.height*0.5) # Reset transformation # Draw base ctx.translate(0, 81) ctx.lineWidth = '1' ctx.strokeStyle = color3 ctx.fillStyle = color1 ctx.fill(base1_svg) ctx.stroke(base1_svg) # Outline ctx.stroke(base2_svg) # Draw seg1 ctx.rotate(xt[0]) ctx.fillStyle = color1 ctx.fill(seg11_svg) ctx.stroke(seg11_svg) # Outline ctx.fillStyle = color2 if selectable and ctx.isPointInPath(seg12_svg, mouse0[0], mouse0[1]): ctx.fillStyle = '#3399FF' hover_joint = 0 ctx.fill(seg12_svg) ctx.stroke(seg12_svg) ctx.stroke(seg13_svg) ctx.stroke(seg14_svg) ctx.stroke(seg15_svg) # Draw seg2 ctx.translate(0, -79) ctx.rotate(xt[1]) ctx.fillStyle = color1 ctx.fill(seg21_svg) ctx.stroke(seg21_svg) # Outline ctx.fillStyle = color2 if selectable and ctx.isPointInPath(seg22_svg, mouse0[0], mouse0[1]): ctx.fillStyle = '#FF9933' hover_joint = 1 ctx.fill(seg22_svg) ctx.stroke(seg22_svg) ctx.stroke(seg23_svg) ctx.stroke(seg24_svg) # Draw seg3 ctx.translate(0, -96) ctx.rotate(xt[2]) ctx.fillStyle = color1 ctx.fill(seg31_svg) ctx.stroke(seg31_svg) # Outline ctx.fill(seg32_svg) ctx.stroke(seg32_svg) # Outline ctx.fill(seg33_svg) ctx.stroke(seg33_svg) # Outline ctx.fillStyle = color2 if selectable and ctx.isPointInPath(seg34_svg, mouse0[0], mouse0[1]): ctx.fillStyle = '#99FF33' hover_joint = 2 ctx.fill(seg34_svg) ctx.stroke(seg34_svg) ctx.stroke(seg35_svg) ctx.stroke(seg36_svg) ctx.stroke(seg37_svg) # Draw end-effector point ctx.translate(-20.5, -51) ctx.beginPath() ctx.arc(0, 0, 2, 0, 2 * np.pi) ctx.fillStyle = color4 ctx.fill() # # Draw skeleton of the kinematic chain # ctx.setTransform(scaling_factor, 0, 0, scaling_factor, canvas.width*0.5, canvas.height*0.5) # Reset transformation # ctx.lineCap = 'round' # ctx.lineJoin = 'round' # ctx.lineWidth = '2' # ctx.strokeStyle = '#FF8888' # f = fkin0(x, param) # ctx.beginPath() # ctx.moveTo(0, 81) # for i in range(param.nbVarX+1): # ctx.lineTo(f[0,i], f[1,i]) # ctx.stroke() def draw_obj(param, color, colortxt): global selected_obj, hover_obj ctx.setTransform(scaling_factor, 0, 0, scaling_factor, canvas.width*0.5, canvas.height*0.5) # Reset transformation ctx.translate(param.Mu[0], param.Mu[1]) ctx.rotate(param.Mu[2]) # Draw object ctx.fillStyle = color obj = Path2D.new() obj.rect(-param.sz[0]/2, -param.sz[1]/2, param.sz[0], param.sz[1]) ctx.fill(obj) if ctx.isPointInPath(obj, mouse0[0], mouse0[1]): hover_obj = 0 if ctx.isPointInPath(obj, mouse0[0], mouse0[1]) and mousedown==1: selected_obj = 0 #ctx.fillRect(-param.sz[0]/2, -param.sz[1]/2, param.sz[0], param.sz[1]) if param.sz[0] > 39 and param.sz[1] > 19: ctx.textAlign = 'center' ctx.textBaseline = 'middle' ctx.font = '10px Permanent Marker' ctx.fillStyle = colortxt ctx.fillText('Move me!', 0, 0) def controlCommand(x, param): #f_ee = fkin(x, param) #J = Jkin(x, param) #u = np.linalg.pinv(J) @ logmap(fh, f_ee) u = np.zeros(param.nbVarX) return u ######################################################################################### def errorHandler(e): msg = 'Error: ' + str(e) console.error(msg) el = document.getElementById('errors') el.innerText = msg #el.textContent = msg ######################################################################################### x = np.array([-np.pi/4, np.pi/2, np.pi/4]) # Initial robot state u = np.zeros(param.nbVarX) while True: try: u = controlCommand(x, param) except Exception as e: errorHandler(e) #u = np.zeros(param.nbVarX) def controlCommand(x, param): u = np.zeros(param.nbVarX) return u x += u * param.dt # Reinit hovering variables hover_joint = -1 hover_obj = -1 # Rendering clear_screen() draw_ground() draw_obj(param, '#FF3399', '#DD1177') draw_robot(x, '#CCCCCC', '#AAAAAA', '#222222', '#000000', True) # Object selection if selected_obj==0: param.Mu[:2] = mouse param.Mu[0] = max(min(param.Mu[0],225), -225) param.Mu[1] = max(min(param.Mu[1],175), -175) param.Mu[2] = (float)(object_angle.value) await asyncio.sleep(0.0001)